(читать ЧАСТЬ 29) ...
Исследование астробиологии сосредоточено вокруг понимания потенциала других органов Солнечной системы для поддержки жизни. Исследователи проводят полевые, лабораторные и теоретические исследования в области минералогии, микробиологии, геохимии и органической и неорганической химии, чтобы помочь планировать будущие миссии по разведке планет. Уникальное сочетание науки и техники в Калифорнийском Научном Институте способствовало участию двух команд в Институте астробиологии НАСА (NAI), сотрудничеству между несколькими виртуальными институтами, в течение предыдущего пятилетнего цикла финансирования (CAN 5, 2009-2014). Одна из двух команд изучала астробиологию ледяных миров, а другая сосредоточилась на самой большой луне Сатурна - Титане. Команда 1 была повторно отобрана НАСА для продолжения на ещё один пятилетний цикл (CAN 7, главный следователь: д-р Исик Каник, 2015-2020). Астробиология фокусируется на изучении планетарных условий обитания и обитаемости, а также изучает вопрос о появлении жизни на подводных щелочных гидротермальных жерлах и природе жизни в экстремальных условиях. Пул исследователей астробиологии в специализированных институтах является междисциплинарной группой ученых, инженеров и техников из традиционных областей геологии, микробиологии, физики и химии, которые сейчас сотрудничают в этой междисциплинарной области. Команды придерживаются научного метода, который использует системный подход к астробиологии: интеграция полевой, теоретической и лабораторной работы и включение этих результатов в разработку инструментов, имеющих отношение к ответам на научные вопросы миссии.
объясняется большим удельным весом основного технологического времени процессов штамповки (большая длина заготовок-лент, высокая скорость штамповки, – 400-1500 ходов в минуту).
Отказы 6-8 менее значимы в условиях массового штамповочного производства, частота их появления невелика при почти одинаковых потерях времени на их устранение в сравнении с основными.
По второму признаку отказы можно поделить на полностью устранимые и ограниченно устранимые.
К первым относятся отказы вышеуказанных наименований, когда причины их возникновения систематические. Примерами их могут быть: трещины вставных матриц из-за забивки их полостей отходами по причине отсутствия или недостаточной величины освобождения; заусенцы на поверхностях штампуемой детали по причине грубых погрешностей центрирования инструментов; зарубание инструментов и поломка пуансонов по той же причине; значительные отклонения от установленных чертежных допусков на размеры и взаимное расположение поверхностей детали по причине ошибок в координатах взаимного расположения поверхностей сопрягаемых инструментов; вытягивание отходов наверх зеркала матрицы из-за изначально большого зазора между инструментами после изготовления штампа.
2.4.1. Обеспечение надежности по критерию объемной прочности инструментов
Исследования данного направления включают разработку научных методов уменьшения отказов рассматриваемых штампов из-за объемных выкрашиваний и изломов рабочих кромок тонкостенных сложноконтурных пуансонов малых сечений, изготовленных из твердого сплава, а также из-за выкрашивания рабочих кромок и трещин стенок твердосплавных вставных матриц, имеющих рабочие окна, соответствующие указанным профилям сечения пуансонов. В состав исследований входят: поиск физических и геометрических факторов, влияющих на разрушение рабочих кромок инструментов: нахождение зависимостей разрушающих напряжений, действующих в локальных объемах материала инструмента от воздействующих внешних механических факторов, механических параметров материала и геометрических факторов, описывающих локальную характеристику сложности контура инструмента. Наблюдениями автора установлено [14 15], что излом пуансона происходит от циклически действующих растягивающих напряжений, максимальные величины которых образуются в объемах материала, прилегающих к опасным переходным зонам участков контура. Геометрическими факторами, характеризующими опасные переходные зоны контуров сечений пуансона и их расположение, приняты места, в которых текущая ширина сечения приближается к толщине штампуемого материала [14, 15]. Трещины стенок вставных матриц происходят от статически действующих растягивающих напряжений, максимальные величины которых образуются в объемах материала, прилегающих к опасным переходным зонам контура окна матрицы, расположенным у выпуклостях к наружу окна. Данные разрушения происходят, в отличие от пуансонов, значительно реже и объясняются действием высоких внутренних контактных давлений, образующихся, как правило, при забивке полости окна матрицы отходами.
...разделении тонколистовых материалов происходит путем адгезионного сцепления плоскости отхода с торцом пуансона при недостаточных значениях сил трения торцов отходов со стенками рабочей полости окна матрицы из-за повышенного износа этих стенок в переходных зонах разделяемого контура, усиливающего действие общего износа всего периметра окна. Установлено, что геометрическим фактором, определяющим возможность вытягивания отхода пуансоном, является достижение недопустимого соотношения среднего технологического зазора между инструментами к длине срединной линии контура сложного сечения. Данная характеристика зависит от степени сложности разделяемого контура, которая принята в ранее проведенных исследованиях автора [2, 3, 4] равной p2/4πF , где p – периметр контура, а F – его площадь.